
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

TEXT PREPROCESSING AND COMPARATIVE

STUDY OF COSINE SIMILARITY AND ITS

INTEGRATION WITH TF-IDF

1
Parag Shah,

2
Pavitra Saxena,

3
Hardik Parnami,

4
Kavita Namdeo,

5
Ritesh Khedekar

1,2,3
Student and

4
Sr. Asst Professor,

5
Asst Professor

1,2,3,4,5
Department of Computer Science and Engineering

1,2,3,4,5
Acropolis Institute of Technology and Research, Indore-453771, Madhya Pradesh

ABSTRACT:

Mammoth pile of text has much in common,

text matching will reduce the redundancy

and the importance of the related text

remains intact. Human collected data is

mostly in Natural Language. Natural

language pre-processing is widely used in

artificial intelligence projects and in text

mining for information retrieval systems. The

need of text pre-processing made the

similarity algorithm much faster using a

systematic NLTK libraries. The matching

approaches developed a new mathematical

formulation such as dynamic programming,

vector dot product, term frequency and their

logarithmic corresponding in the areas of

text similarity algorithms. Other than

mathematical approach vector form of text

can be processed by layered neural net.

Keywords – text pre-processing, semantic

similarity, lexical similarity, Natural

Language processing, Natural Language
Toolkit, Tokenization, Stemming,

lemmatization, stop-words, Levenshtein

distance, Cosine similarity, TF, TF-IDF,

Word2vec

I. INTRODUCTION

Text matching is extensively used technique

for solving semantic problems such as text

mining, natural language processing. Text,

considered as a sentence to a huge

paragraph, consists of words such as

alphanumeric character, special symbols

which are considered as a natural language.
Natural language processing is widely used

in Artificial intelligence, speech recognition,

A.I Bots, Information retrieval systems.

Natural language processing is used to

manipulate natural language (human

understood) and gives machine the ability to

read. Natural language processing (NLP)

is powerful technique which can be done

using Natural Language toolkit (NLTK)

library of python.
In the normal human language there are many

word which might be irrelevant for machine

comprehension, so the text undergoes many

filtrations. NLTK features many functions for

pre-processing such as tokenization, stop-

word elimination, stemming, lemmatization,

reg-ex filter and more.

A wide range of text matching algorithm were

introduced from late 90’s from dynamic

programming to machine learning. Text

similarity has to determine how ‘close’ two

pieces of text are both in surface closeness

[lexical similarity] and meaning [semantic

similarity]. These algorithms include

Levenshtein distance, Cosine Similarity,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

Fuzzy Logic, Jaccard Similarity, Euclidean

distance etc. All of the mentioned above

algorithms are used for measuring similarity

between two given sentences. But do we

have any winning strategy for which is the

best algorithm to use?

No, there are many ways to compute the

features that capture the semantics or

essence of documents and multiple

algorithms to capture dependency structure

of documents, so that the focus remains on

meanings of documents. Talking about all

the algorithms is beyond the scope of this

research paper. We will talk about

algorithms named as Levenshtein distance,

Cosine Similarity, Word2Vec. Machine

Learning algorithms and almost all Deep

Learning Architectures are incapable of

processing strings or plain text in their raw

form, So Word Embedding is done i.e., the

texts converted into numbers and there may

be different numerical representations of the

same text. Word Embedding can be done in

two ways [1] Frequency based Embedding

[2] Prediction based Embedding. As TF-IDF

is example of frequency based embedding.

Word2vec method were prediction based in

the sense that they provided probabilities to

the words and proved to be like word

analogies and word similarities. Unlike most

of the previously used neural network

architectures for learning word vectors,

models don’t involve dense matrix

multiplications. This makes the training

extremely efficient: an optimized single-

machine implementation can train on more

than 100 billion words in one day.

II. Literature Survey

Every algorithm needs text, a preprocessed

text, then how text preprocesses? Using nltk

a much useful data can be generated.

Tokenization

Tokenization is a step which splits longer
strings of text into smaller pieces, or tokens.
Larger chunks of text can be tokenized into
sentences; sentences can be tokenized into
words. Tokenization is not like split function,
but in tokenization tokens are created using
different approach such as, sent_tokenize
(tokenize sentences from paragraph),
word_tokenize (tokenize words from
sentences), RegexpTokenizer (tokenize the
sentences to word using regular expression)
which can be useful for sentences having
special symbols, TreebankWordTokenizer
(tokenize words on the basis of dictionary
meaning) is very efficient over others. All the
tokenizer belongs to nltk library of python.

Normalization

Normalization generally refers to a series of
related tasks meant to put all text on same
level that is text to be processed by stages of
filtration such as Stemming, lemmatization
and elimination of stop words.

Stemming

Stemming is the process of eliminating
affixes (suffixed, prefixes, infixes,
circumfixes) from a word in order to obtain
a word stem. For example, obtaining
“dance” from “dancing”.

Figure 1: Stemming example

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

Lemmatization

Lemmatization is related to stemming,

differing in that lemmatization is able to

capture canonical forms based on a word's

lemma. For example, stemming the word

"nice" would fail to return its citation form

(another word for lemma) i.e., derives the

synonyms of the word.

Figure 2: Lemmatization example

Elimination of Stop words

Stop words are those words which
contribute little to overall meaning the
sentences, stop words are generally the most
common words in a language. For example,
a, the, for, and, of etc.

Figure 3: Eliminate stop word

Levenshtein Distance

The Levenshtein distance between two
strings a, b(of length |a| and |b| respectively)
is given by

Figure 4: Levenshtein distance formula

where is the indicator function equal to 0

when and equal to 1 otherwise,

and is the distance between the first i

characters of a and the first j characters of b,

i and j are 1-based indices. Note that the first

element in the minimum corresponds to

deletion (from a to b), the second to insertion

and the third to match or mismatch, depending

on whether the respective symbols are the

same. Levenshtein distance is said to be

number of single edits that is required in a

word to be like the other. For example, the

Levenshtein distance between the word “give”

and “take” is 3. Also the distance between the

word “Danger” and “Dangerous” is 3. It can

be observed that the meaning of “Danger” and

“Dangerous” is far similar than “give” and

“take” but their Levenshtein distance is same.

Cosine Similarity

This approach is used to find the similarity

between two sentences irrespective of their

sizes. Generally, in text matching approaches

is based on matching the maximum number of

common words between the documents, but

this approach inherits flaws, i.e. as the size of

document increases the number of common

words increases, the matching deviates from

actual topic. So cosine similarity helps in

overcoming the flaw. Mathematically, it

measures the cosine of the angle between two

vectors projected in a multi-dimensional

space.

Cosine similarity derives as:

Figure 5: Cosine similarity formula

The cosine of 0° is 1, and it is less than 1 for

any angle in the interval (0, π] radians, it is
thus a judgment of orientation(angle).

When plotted on a multi-dimensional space,

where each dimension corresponds

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

to a word in the document, the cosine

similarity captures the angle of the

documents and not the magnitude as

computed in Euclidean distance.

the weight of rare words across all

documents in the corpus.

Figure 6: Graphical Representation
The above figure elucidates that the dist (A,

B) is the magnitude which is the result of

euclidean distance while the angle(θ)

between the “A” and “B” is representing

cosine angle i.e. cosθ.

Figure 8: Inverse Document Frequency formula

III. Research Methodology

Now consider an example, given below are

four general statements:

d1: the best American restaurant enjoys the

best pizza

d2: Indian restaurant enjoys the best

khichadi.

d3: japan restaurant enjoys the best sushi.

d4: the best the best Indian restaurant.

Observing the occurrence in the following

table.

Term Frequency (TF)

The number of times a word appears in a

document divided by the total number of

words in the document. Every document

has its own term frequency.

Figure 7: Term Frequency formula

Inverse Document Frequency (IDF)

The log of the number of documents divided

by the number of documents that contain the

word w. Inverse data frequency determines

Figure 9: Occurrence of words

Frequencies are:

D1: [1,1,1,2,2,1,0,0,0,0]

D2: [0,1,1,1,1,0,1,1,0,0]

D3: [0,1,1,1,1,0,0,0,1,1]

D4: [0,1,0,2,2,0,1,0,0,0]

From Cosine formula:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 5

Similarity=

Cosine similarity of d1: d4 =9/11=0.82.

After calculating for each document, the

observed results are shown in figure 8.

Figure 10: Cosine Similarity with d4

The similarity of document d2 and d4

should be much similar but the document d1

and d4 are more similar, this is because the

common word matching from d1 to d4 is

more as compared to d2 (as shown in Figure

11 and Figure 12).

Figure 11: Representing d1 and d4

Figure 12: Representing d2 and d4

The above figure illustrates that the most

desirable matching is becoming the least

desirable due to occurrence of stop words.

To overcome this limitation and to reduce

the importance of stop words TF-IDF (Term

Frequency-Inverse Document Frequency)

can be used.

Integrating cosine similarity with TF-IDF,

the observation are in the following table:

Figure 13: Integration of TF-IDF

The final output is as
 follows:

Figure 14: Final Output

After integrating TF-IDF the final results

match the desired results. i.e. d2 is more

similar to d4.

IV. Result

Text pre-processing helps in removing

unwanted noise, such as punctuation marks

and stop words and make the raw text into

refine text which can further useful for

similarity algorithm.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 6

Figure 15: Text pre-processing

Cosine similarity is one of the algorithm to

find the similarity between the documents but

the similarity score suffers by only applying

term frequency vector (CountVectorizer). By

combining TF-IDF(TfidfVectorizer) the

similarity score drastically improves.

Figure 16: Intermediate process

The final output after calculating TF-IDF

will generate the similarity score for d2 and

d4 is 75.3% which is true.

Figure 17: Final Output

V. Conclusion and Future

Enhancement

Text data is usually the most generated data

from past till now be it in any form. Text

matching and Text Similarity is covering a

broad spectrum, as artificial intelligence is

improving it is attracting new technologies

such as chatbot, information retrieval

systems, context gathering in which pattern

matching is widely used. Chatbot recognizes

the received text and then matches the intent

with the received text and responds

accordingly. But it is easily observable that

no single algorithm is fully accurate.

Highest accuracy can be achieved only with

combinations among this algorithm. For

example, [1] Cosine Similarity with TF-IDF

[2] Cosine Similarity with Word2Vec [3]

Cosine Similarity with BERT Embedding

and many more. This algorithm is suitable

with subjective text check which can be

used in online platforms in recruitment

processes. Since mass recruitment process

becomes tedious, subjective test could be

taken without involvement of humans and

result can be generated using text similarity,

this would be cost effective and would avoid

biasness during recruitment.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 04 | April -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 7

VI. References

[1] Tomas Mikolov,Ilya Sutskever,Kai

Chen,Greg Corrado,Jeffrey Dean,Distributed

Representations of Words and Phrases and

their Compositionality Google Inc. Mountain

View California 2013

[2] Hakak, Saqib & Kamsin, Amirrudin &

Palaiahnakote, Shivakumara & Gilkar,

Gulshan & Khan, Wazir & Imran,

Muhammad. (2019). Exact String Matching

Algorithms: Survey, Issues, and Future

Research Directions. IEEE Access. PP. 1-1.

10.1109/ACCESS.2019.2914071.

[3] Albitar, Shereen & Fournier, Sébastien &

Espinasse, Bernard. (2014). An Effective
TF/IDF-based Text-to-Text Semantic

Similarity Measure for Text Classification.

10.1007/978-3-319-11749-2_8.

[4] S. Zhang, Y. Hu and G. Bian, "Research

on string similarity algorithm based on

Levenshtein Distance," 2017 IEEE 2nd
Advanced Information Technology,

Electronic and Automation Control

Conference (IAEAC), Chongqing, 2017, pp.

2247-2251.
[5]https://www.analyticsvidhya.com/blog/20

17/06/word-embeddings-count-word2veec/

[6]https://www.machinelearningplus.com/nl
p/cosine-similarity/

http://www.ijsrem.com/

